User Cases

>

Optimization of Electrolyte Formulation for Battery Materials | QuantistryLab Viscosity Simulations

Batteries

Optimization of Electrolyte Formulation for Battery Materials | QuantistryLab Viscosity Simulations

May 28, 2024

Lithium-ion batteries are used in countless applications today, from powering smartphones to electric cars. The main reasons for their popularity are their high energy density and efficiency, as well as a long-lasting battery life.  

Through R&D efforts, lithium-ion batteries continue to improve and optimize their safety, durability, energy storage, charging speed, and cost. However, this is often a complex and time-consuming process that must consider a large scope of components and variables that, combined, affect the performance of the battery.

Unlock The Full Article For Free!

Get Access

Share

Recommended Use Cases

Batteries
Optimization of Electrolyte Formulation for Battery Materials | QuantistryLab Viscosity Simulations

Optimizing electrolyte formulations is essential for the development of high-performance batteries. This use case explores how the QuantistryLab platform enables users to simulate and predict the viscosity of an electrolyte formulation.

Learn More
Lubricants
Surface Adsorption of Additives

The interaction of the lubricant components with metallic or oxidized surfaces plays a fundamental role in the formation of a protective film. Atomistic simulations provide in-depth insights into the adsorption of additives on the surfaces, their binding mode and binding strength.

Learn More
Batteries
Electrode materials with optimal open circuit voltages (OCVs)

The energy density of a battery cell largely depends on the materials used, making the search for optimal material compositions an important aspect of battery R&D.

Learn More